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Abstract

The polytropic gas equations are shown to be the geodesic flows with respect to anL2 metric
on the semidirect product space Diff(S1) � C∞(S1), where Diff(S1) is the group of orientation
preserving diffeomorphisms of the circle. We also show that theN = 1 supersymmetric polytropic
gas equation constitute an integrable geodesic flow on the extended Neveu–Schwarz space. Recently
other kinds of supersymmetrizations have been studied vigorously in connection with superstring
theory and are called supersymmetric-B (SUSY-B) extension. In this paper we also show that the
SUSY-B extension of the polytropic gas equation form a geodesic flow on the extension of the
Neveu–Schwarz space.
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1. Introduction

It is known that the periodic Korteweg–de Vries (KdV) equation can be interpreted as the
geodesic flow of the right invariant metric on the Bott–Virasoro group, which at the identity
is given by theL2 inner product[27–29].

In the theory of integrable systems several multicomponent systems have been used spo-
radically. These are all biHamiltonian systems, enjoys a compatible pair of Hamiltonian
structures. This system belongs to an infinite dimensional hierarchy of biHamiltonian sys-
tems. The resulting Hamiltonian flows can be mapped into each other by the recursion
operator, which is formally defined as the “quotient” of the two Hamiltonian structure.
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Several of the well-known biHamiltonian systems that fall into the two component case are
actually triHamiltonian. In our earlier papers[11–13], we show that several of these two
component systems constitute geodesic flows on the extension of the Bott–Virasoro group.

In this paper we will consider first polytropic gas and Chaplygin gas (which corresponds
to the specific choice ofγ = −1 in the polytropic gas) equations. All these gas equations
are integrable two component systems, it has an infinite number of conserved quantities,
higher commuting flows and multiHamiltonian structure[25,26], and all of them constitute
various integrable geodesic flows on the extended space of the group of diffeomorphisms
of the circle with respect to anL2 metric.

Recently, there has been a growing interest in supersymmetric integrable systems. These
systems are much less understood than comparably ordinary integrable systems. Using
the superconformal group with anL2 metric, Ovsienko and Khesin[27] showed how the
supersymmetric KdV equation arises from a geodesic flow. This result has been further
extended by Devchand and Schiff[9]. They showed that the supersymmetric Camassa–Holm
equation[6] describes geodesic motion on the superconformal group with respect to a
metric induced by anH1 metric [22]. Naturally, it is tempting to study the geodesic flow
on the extension of the Neveu–Schwarz space[19–21]. This would yield a supersymmetric
generalization of the two component integrable systems.

Recently in an interesting paper Das and Popowicz[8] initiated the study of supersym-
metric generalization of the polytropic gas equation. This equation is related to various
theories, viz. the Born–Infeld system[2], D-Brane theory[4,15], Monge–Ampére equa-
tion [23,24], etc. Jackiw and coworkers ([4,15] and references therein) demonstrated that a
supersymmetrization of the Chaplygin gas can be obtained from the superstring theory in
three dimensions with aκ supersymmetry after gauge fixing. The supersymmetric system
of equations obtained in this form are called supersymmetric-B (SUSY-B) extension. In
this paper we will show that this set of equations also arises from a geodesic flow on the
superconformal group with respect to anL2 metric.

Following Ebin–Marsden[10], we enlarge Diff(S1) to a Hilbert manifold Diffs(S1), the
diffeomorphisms of the Sobolev classHs. This is a topological space. Ifs > n/2, it makes
sense to talk about anHs map from one manifold to another. Using local chart one can
check that the derivations of order less than or equal tos are square integrable.

In Section 2, at first we will review some of the essential features of Diff(S1) � C∞(S1)

and its algebra and then we will study the polytropic gas equation as a geodesic flow on the
Diff s(S1)�C∞(S1), related toL2 inner product. InSection 3, after a brief discussions on the
extension of the Neveu–Schwarz space we will go on to show that the supersymmetric poly-
tropic gas system is the geodesic flow on this space. We also present the SUSY-B extension
of the polytropic gas equation as the geodesic flow. Thus, we present a mathematical rigor-
ous description of SUSY-B polytropic gas equation.Section 4is devoted to multicomponent
generalization of the polytropic gas equation. We end with a brief conclusion inSection 5.

2. Background: polytropic gas equation and geodesic flow

Let Diff s(S1) be the group of orientation preserving SobolevHs diffeomorphisms of
the circle. It is known that the group Diffs(S1) as well as its Lie algebra of vector fields
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onS1, Tid Diff s(S1) = Vects(S1), have non-trivial one-dimensional central extensions, the
Bott–Virasoro group Diffs(S1) and the Virasoro algebra Vir, respectively[16,17,28].

The Lie algebra Vects(S1) is the algebra of smooth vector fields onS1. This satisfies the
commutation relations[

f
d

dx
, g

d

dx

]
:= (f(x)g′(x) − f ′(x)g(x))

d

dx
. (1)

One parameter family of Vects(S1) acts on the space of smooth functionsC∞(S1) by

L
(µ)

f(x)(d/dx)(x) = f(x)′(x) − µf ′(x)(x), (2)

where

L
(µ)

f(x)(d/dx)(x) = f(x)
d

dx
− µf ′(x)

is the derivative with respect to the vector fieldf(x)(d/dx) and satisfies

[L(µ)

f(x)(d/dx), L
(µ)

g(x)(d/dx)] = L
(µ)

(f(x)g′(x)−f ′(x)g(x))(d/dx)
.

The Lie algebra of Diffs(S1) � C∞(S1) is the semidirect product Lie algebra

Ĝ = Vects(S1) � C∞(S1).

An element ofĜ is a pair(f(x)(d/dx), a(x)), wheref(x)(d/dx) ∈ Vects(S1) anda(x) ∈
C∞(S1).

The extension of the Lie algebrâG is given by

G = Vects(S1) � C∞(S1) ⊕ R3.

This has been considered in various places[1,14,19]. It was shown in[22] that the cocycles
define the universal central extension of the Lie algebra Vects(S1) � C∞(S1). This means
H2(Vect(S1) � C∞(S1)) = R3.

Definition 1. The commutation relation in̂G is given by[(
f

d

dx
, a(x)

)
,

(
g

d

dx
, b(x)

)]
:=
(

( fg′ − f ′g)
d

dx
, fb′ − ga′

)
. (3)

The dual space of smooth functionsC∞(S1) is the space of distributions (generalized
functions) onS1, of particular interest are the orbits in̂G∗

reg. In the case of current group,
Gelfand, Vershik and Graev have constructed some of the corresponding representations.

Definition 2. The regular part of the dual spaceĜ∗ to the Lie algebrâG is defined as follows:
Consider

Ĝ∗
reg = C∞(S1) ⊕ C∞(S1),
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and fix the pairing between this space andĜ, 〈·, ·〉 : Ĝ∗
reg ⊗ Ĝ→ R:

〈û, f̂ 〉 =
∫

S1
f(x)u(x) dx +

∫
S1

(x)v(x) dx, (4)

whereû = (u(x), v) andf̂ = (f(d/dx), a).

Let us extend(4) to a right invariant metric on the semidirect product space Diffs(S1) �
C∞(S1) by setting

〈û, f̂ 〉
ξ̂

= 〈d
ξ̂
R

ξ̂−1û, d
ξ̂
R

ξ̂−1f̂ 〉L2 (5)

for any ξ̂ ∈ G andû, f̂ ∈ T
ξ̂
G, where

R
ξ̂

: G→ G

is the right translation bŷξ.
At first we shall show that the polytropic gas equation is precisely the Euler–Arnold

equation[3] on the dual space ofG associated with theL2 inner product.
Given any three elements

f̂ =
(

f
d

dx
, a

)
, ĝ =

(
g

d

dx
, b

)
, û =

(
u

d

dx
, v

)
in G, we obtain the following lemma.

Lemma 1.

ad∗
f̂

û =
(

2f ′(x)u(x) + f(x)u′(x) + a′(x)v(x)

f ′(x)v(x) + f(x)v′(x)

)
.

Proof. This follows from

〈ad∗
f̂

û, ĝ〉L2 = 〈û, [f̂ , ĝ]〉L2 =
〈(

u(x)
d

dx
, v(x), c

)
,

[
( fg′ − f ′g)

d

dx
, f b′ − ga′, ω

]〉
L2

= −
∫

S1
( fg′ − f ′g)u(x) dx −

∫
S1

(fb′ − ga′)v dx.

Sincef, g, u are periodic functions, hence integrating by parts we obtain

RHS=
(

2f ′(x)u(x) + f(x)u′(x) + a′(x)v(x)

f ′(x)v(x) + f(x)v′(x)

)
.

�

The implectic or Poisson operator is given by

O =


∂u + u∂ v∂ 0 0

∂v 0 0 0
0 0 u v

0 0 v 0

 . (6)
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The Euler–Arnold equation is the Hamiltonian flow on the coadjoint orbit inĜ∗ [3], gener-
ated by the Hamiltonian

H(u, v) = 1

2

(
u2 + vγ

γ(γ − 1)

)
, (7)

given by
δH

δu
δH

δv


t

= O


δH

δu
δH

δv

 . (8)

Let V be a vector space and assume that the Lie groupG acts on the left by linear maps on
V , thusG acts on the left on its dual spaceV ∗ (for details, see for example,[7]).

Proposition 1. Let G � V be a semidirect product space(possibly infinite dimensional),
equipped with a metric〈·, ·〉 which is right translation. A curvet → c(t) in G � V is
a geodesic of this metric if and only ifu(t) = dc(t)Rc(t)−1ċ(t) satisfies the Euler–Arnold
equation.

Thus, we obtain the polytropic gas equation.

Theorem 1. Let t �→ c be a curve in theDiff s(S1) � C∞(S1). Letc = (e, e) be the initial
point, directing to the vectorc(0) = (u(x)(d/dx), v(x)). Thenc(t) is a geodesic of theL2

metric if and only if(u(x, t)(d/dx), v(x, t)) satisfies the polytropic gas equation

ut = 3uux + vγ−2vx, vt = (uv)x.

Remark 1 ([5]). The Chaplygin gas equation

ut + uux + v−3vx = 0, vt + (uv)x = 0, (9)

transforms underu(x) = −(bx/ax) andv(x) = ax to (A) some minimal surface equation

axx(a
2
t − 1) − 2axataxt + a2

xatt = 0, (10)

and (B) Monge–Ampère equation

U2
xt − UxxUtt = 1. (11)

Proof. By direct substitution the first and second equations become

axx(1 − b2
x) + 2axbxbxx − a2

xbxt = 0,

andat = bx, respectively. We obtain the first part.
The equationat = bx allows us to writea andb in terms of a potentialU, such that

a = Ux, b = Ut.

Thus, we obtain Monge–Ampére equation. �
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3. Geodesic flow and super polytropic gas equations

The first and foremost characteristic property of super algebra is that all the additive
groups of its basic and derived structures areZ2 graded. A vector superspace is aZ2 graded
vector spaceV = V0 + V1. An elementv of V0 (resp.V1) is said to be even (resp. odd). The
super commutator of a pair of elementsv, ω ∈ V is defined to be the element

[v, w] = vw − (−1)v̄w̄wv,

wheev̄ andw̄ are the degrees ofv andw respectively.
The generalized Neveu–Schwarz superalgebra has two parts, Bosonic (even) and Fermionic

(odd). These are given by

SĜB = Vect(S1) ⊕ C∞(S1), (12)

SĜF = C∞(S1) ⊕ C∞(S1). (13)

There are three different actions:

(A) Action of Bosonic part on Bosonic part, given in(7).
(B) Action of Bosonic part on Fermionic part, given by[(

f(x)
d

dx
, a(x)

)
, (φ(x), α(x))

]
:=
(

f(x)φ′ − 1
2f ′(x)φ(x)

f(x)α′(x) + 1
2f ′(x)α(x) − 1

2a′(x)φ(x)

)
. (14)

(C) Action of Fermionic part on Fermionic part, given by

[·, ·]+ : SĜF ⊗ SĜF → SĜB,

[(φ(x), α(x)), (ψ(x), β(x))]+ =
(

φψ
d

dx
, φβ + αψ

)
. (15)

Definition 3. The pairing between the regular part of the dual spaceSĜ∗ andSĜ is given
by 〈

(u(x), v(x), ψ(x), β),

(
f(x)

d

dx
, a(x), φ(x), α

)〉
=
∫

S1
f(x)u(x) dx+

∫
S1

a(x)v(x) dx+
∫

S1
φ(x)ψ(x) dx +

∫
S1

α(x)β(x) dx. (16)

Lemma 2.

ad∗
f̂

û =


2uf ′(x) + u′f + u′v + 1

2η′φ 3
2ηφ′ + 1

2(ξu − ξ′u)

f ′v + fv′ + 1
2(β′φ + βφ′)

fη′ + 3
2f ′η + 1

2α′ξ + κ(uφ + vα) + 2φ′′

fξ′ + 1
2f ′ξ + κvφ

 . (17)
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Sketch of the proof. Using the definition of the coadjoint action

〈ad∗
f̂

û, ĝ〉 = 〈f̂ , [û, ĝ]〉,
where

f̂ =


f(x)

a(x)

φ(x)

α(x)

 , û =


u(x)

v(x)

ψ(x)

β(x)

 , ĝ =


g(x)

b(x)

χ(x)

γ(x)

 ,

we obtain

(u, v, η, ξ),


( fg′ − f ′g)

d

dx
+ κφχ

d

dx

fb′ − f ′b + κ(φγ + αχ)

fχ′ − 1
2f ′χ + gφ′ − 1

2g′φ

fγ ′ + 1
2f ′γ − 1

2a′γ + gα′ + 1
2g′α − 1

2b′φ

 .

Our result follows from this formula.

3.1. Case 1: N= 1 supersymmetric polytropic gas

In this case, we will considerκ = 0, that is, we will not consider the part arising from
the action of Fermionic part on Fermionic part. The implectic operator for this system is

OSUSY =


∂u + u∂ v∂ 3

2η∂ + 1
2η′ 1

2ξ∂ − 1
2ξ′

∂v 0 −1
2∂ξ 0

3
2η∂ + η′ 1

2ξ′ 0 0

ξ′ + 1
2ξ∂ 0 0 0

 . (18)

Now we use the Euler–Arnold equation:


u

v

η

ξ


t

= OSUSY



δH

δu

δH

δv

δH

δη

δH

δξ


. (19)

If we take HamiltonianH such that

δH

δu
= u,

δH

δv
= 2

γ
uγ−2,

δH

δη
= η′,

δH

δξ
= −2(γ − 2)

γ
ξ′.

Thus, we obtain the supersymmetric version of the polytropic gas equation as a geodesic
flow on the superconformal group.
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Theorem 2. Let t �→ c′ be a curve in theSDiff s(S1) � C∞(S1). Let c = (e, e) be the
initial point, directing to the vectorc′(0) = (u(x)(d/dx), v(x), η(x), ξ(x)). Thenc′(t) is a
geodesic of theL2 metric if and only if(u(x, t)(d/dx), v(x, t), η(x, t), ξ(x, t)) satisfies the
polytropic gas equation

ut = 3uux + 2

γ
vxvγ−2 − γ − 2

γ
ξξxxv

γ−3 − (γ − 2)(γ − 3)

γ
vxvγ−4 + ηηxx, (20)

vt = (uv − 1
2ξηx)x, (21)

ηt = ηxu + 3

2
ηux + γ − 2

γ
ξvxvγ−3, (22)

ξt = ξxu + 1
2ξux. (23)

This equation is closely related to what Das and Popowicz[8] obtained for the supersym-
metric polytropic equation.

Let us study somespecial casesof these equations.

(A) If we set the super variablesξ = η = 0, we get back the polytropic gas equation.
(B) If we setv = ξ = 0, we obtain

ut = 3uux + ηηxx, ηt = ηxu + 3
2ηux.

This is a Fermionic extension of the dispersionless KdV equation. Modulo rescalings, this is
related to the super dispersionless KdV of Mathieu and Manin–Radul type (see for example,
[9]).

3.2. Case 2: SUSY-B extension of the polytropic gas equations

The supersymmetric Bosonic extensions are simple supersymmetrizations of a Bosonic
integrable model that are automatically integrable. The basic idea is to supersymmetrize the
ordinary fields. These supersymmetric system of equations has the peculiar feature that the
two Bosonic equations do not have any Fermion terms. Mathematically speaking, we will
only consider the part arises from the action of Fermion part on Fermion part. Earlier such
type of supersymmetrizations were not considered seriously. These are considered trivial
extensions. Due to the advancements of superstring theory, especially D-Brane theory, these
type of supersymmetrizations are becoming important.

In this section we will show that this set of equations also can be manifested as a geodesic
flow on superconformal group.

Lemma 3.

ad∗
f̂

û =


2uf ′(x) + u′f + a′v

f ′v + fv′

uφ + vα

vφ

 .
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Thus, the implectic operator for the SUSY-B extension of the polytropic gas equation is

OSUSY-B =


∂u + u∂ u∂ 0 0

∂v 0 0 0
0 0 u v

0 0 v 0

 . (24)

If we take HamiltonianH such that

δH

δu
= u,

δH

δv
= vγ−2,

δH

δη
= η′,

δH

δξ
= ξ′vγ−3.

Hence, we obtain the following theorem.

Theorem 3. The SUSY-B extension of the polytropic gas equations

ut = 3uux + vxvγ−2, (25)

vt = (uv)x, (26)

ηt = ηxu + ξxvγ−3, (27)

ξt = vηx, (28)

constitute the Euler–Arnold flows on the dual space ofSVect(S1) � C∞(S1).

3.3. Kac–Moody algebra and Lie–Poisson structure

The Hamiltonian operators associated with polytropic gas equations give rise to Kac–Moody
algebras. There is an explicit algorithm for the construction of Kac–Moody algebras from
the Hamiltonian operator which is essentially based on Fourier analysis.

The Hamiltonian operator of the polytropic gas is

O =
(

∂u + u∂ v∂

∂v 0

)
.

Let us calculate the Lie–Poisson brackets ofu(x) andv(x):

{u(x), u(x′)} = 2uδ′(x − x′) + u′δ(x − x′), (29)

{u(x), v(x′)} = vδ′(x − x′), (30)

{v(x), v(x′)} = δ′(x − x′). (31)

Let us Fourier expandu(x) andv(x)

u(x) =
∞∑

p=1

Lp eipx + α, v(x)

∞∑
p=1

Sp eipx + β.

Hence, we obtain the Kac–Moody algebra corresponding to the above Poisson brackets

[Ln, Lm] = (n − m)Ln+m + αδn+m,0, (32)
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[Ln, Sm] = −mSn+m + βδn+m,0, (33)

[Sn, Sm] = nδn+m,0. (34)

Similarly, one can obtain super Kac–Moody algebra from(16).

4. Multicomponent polytropic gas equation

In this section we consider the Euler–Arnold equation on the dual space of Vect(S1) �
C∞(S1)k+1. We split the spaceC∞(S1)k+1 into C∞(S1) × C∞(S1)k. A typical element of
Vect(S1) � C∞(S1)k+1 is

f(x)
d

dx

a(x)

�p

 .

This type of construction has been discussed by Kupershmidt[18].

Definition 4. The commutation relation in̂G is given by


f(x)
d

dx

a(x)

�p

 ,


g(x)

d

dx

b(x)

�q


 :=


( fg′ − f ′g)

d

dx

fb′ − ga′

f �q − g�p

 . (35)

Definition 5. The regular part of the dual spaceĜ∗ to the Lie algebrâG as follows. Consider

Ĝ∗
reg = C∞(S1) ⊕ C∞(S1) ⊕ · · · ⊕ C∞(S1)︸ ︷︷ ︸

k

,

and fix the pairing between this space andĜ, 〈·, ·〉 : Ĝ∗
reg ⊗ Ĝ→ R:

〈û, f̂ 〉 =
∫

S1
f(x)u(x) dx +

∫
S1

u(x)�v(x) dx + �wγ, (36)

whereû = (u(x), v, �w, γ) andf̂ = (f(d/dx), a, �p, α).

Again from the coadjoint action, we obtain the following set of integrable Hamiltonian
system:

ut = 3uux + vγ−2 = 0, vt = (vu)x, �wt = ( �wu)x.

This is anotheravatarof polytropic gas equation.
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5. Outlook

In this paper we have examined variousN = 1 supersymmetric extension of the poly-
tropic gas equations. In particular, we have studied that these equations are associated to
the coadjoint orbits of the extended Neveu–Schwarz group.

Our work provides a further instance of integrability arising in the setting of geodesic flow
on a super group manifold. Further investigation is needed in order to determine whether the
various super polytropic gas equations are integrable irrespective of the choice of various
Grassman algebra.
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